A very generic datamodel.

I’ve come up with several projects in the past and a few have been mentioned here before. For example, the Garagesale project which was based on a system I called “CART”. Or the WordChain project that was a bit similar in structure. And because those similarities, I’ve been thinking about a very generic datamodel that should be handled to almost any project.

The advantage of a generic database is that you can focus on the business layer while you don’t need to change much in the database itself. The datamodel would still need development but by using the existing model, mapping to existing entities, you could keep it all very simple. And it resulted in this Datamodel:ClassDiagram(Click the image to see a bigger version.)

The top class is ‘Identifier’ which is just an ID of type GUID to find the records. Which will work fine in derived classes too. Since I’m using the Entity Framework 6 I can just use POCO to keep it all very simple. All I have to do is define a DBContext that tells me which tables (classes) I want. If I don’t create an entry for ‘Identifier’, the table won’t be created either.

The next class is the ‘DataContent’ class, which can hold any XML. That way, this class can contain all information that I define in code without the need to create new tables. I also linked it to a ‘DataTemplate’ class which can be used to validate the content of the XML with an XML schema or special style sheet. (I still need to work out how, exactly.) The template can be used to validate the data inside the content.

The ‘BaseItem’ and ‘BaseLink’ classes are the more important here. ‘BaseItem’ contains all fixed data within my system. In the CART system, this would be the catalog. And ‘BaseLink’ defines transactions of a specific item from one item to another. And that’s basically three-fourth of the CART system. (The template is already defined in the ‘DataTemplate’ class.)

I also created two separate link types. One to deal with fixed numbers which is called ‘CountLink’ which you generally use for items. (One cup, two girls, etc.) The other is for fractional numbers like weights or money and is called ‘AmountLink’. These two transaction types will be the most used transaction types, although ‘BaseLink’ can be used to transfer unique items. Derived links could be created to support more special situations but I can’t think of any.

The ‘BaseItems’ class will be used to derive more special items. These special items will define the relations with other items in the system. The simplest of them being the ‘ChildItem’ class that will define more information related to a specific item. They are strongly linked to the parent item, like wheels on a car or keys on a keyboard.

The ‘Relation’ class is used to group multiple items together. For example, we can have ‘Books’ defined as relation with multiple book items linked to it. A second group called ‘Possessions’ could also be created to contain all things I own. Items that would be in both groups would be what is in my personal library.

A special relation type is ‘Property’ which indicates that all items in the relation are owned by a specific owner. No matter what happens with those items, their owner stays the same. Such a property could e.g. be a bank account with a bank as owner. Even though customers use such accounts, the account itself could not be transferred to some other bank.

But the ‘Asset’ class is more interesting since assets are the only items that we can transfer. Any transaction will be about an asset moving from one item to another. Assets can still be anything and this class doesn’t differ much from the ‘BaseItem’ class.

A special asset is a contract. Contracts have a special purpose in transactions. Transactions are always between an item and a contract. Either you put an asset into a contract or extract it from a contract. And contracts themselves can be part of bigger contracts. By checking how much has been sent or received to a contract you can check if all transactions combined are valid. Transactions will have to specify if they’re sending items to the contract or receiving them from the contract.

The ‘BaseContract’ class is the more generic contract type and manages a list of transactions. When it has several transactions, it is important that there are no more ‘phantom items’. (A phantom item would be something that’s sent to the contract but not received by another item, or vice versa.) These contracts will need to be balanced as a check to see if they can be closed or not. They should be temporary and last from the first transaction to the last.

The ‘Contract’ type derived from ‘BaseContract’ contains an extra owner. This owner will be the one who owns any phantom items in the contract. This reduces the amount of transactions and makes the contract everlasting. (Although it can still be closed.) Balancing these contracts is not required, making them ideal as e.g. bank accounts.

Yes, it’s a bit more advanced than my earlier CART system but I’ve considered how I could use this for various projects that I have in mind. Not just the GarageSale project, but also a simple banking application, a chess notation application, a project to keep track of sugar measurements for people with diabetics and my WordChain application.

The banking application would be interesting. It would start with two ‘Relation’ records: “Banks” and “Clients”. The Banks relation would contain Bank records with information of multiple banks. The Clients relation would contain the client records for those banks. And because of the datamodel, clients can have multiple banks.

Banks would be owners of bank accounts, and those accounts would be contracts. All the bank needs to do is keep track of all money going in our out the account. (Making money just another item and all transactions will be of type ‘AmountLink’.) But to link those accounts to the persons who are authorized to receive money from the account, each account would need to be owner of a Property record. The property record then has a list of clients authorized to manage the account.

And we will need six different methods to create transactions. Authorized clients can add or withdraw money from the account. Other clients can send or receive payments from the account, where any money received from the contract needs to be authorized. Finally, the bank would like to have interest, or pays interest. (Or not.) These interest transactions don’t need authorization from the client.

The Chess Notation project would also be interesting. It would start with a Board item and 64 squares items plus a bunch of pieces assets. The game itself would be a basic contract without owner. The Game contract would contain a collection of transactions transferring all pieces to their first locations. A collection of ‘Move’ contracts would also be needed where the Game Contract owns them. The Move would show which move it is (including branches of the game) and the transactions that take place on the board. (White Rook gone from A1, White Rook added to A4 and Black pawn removed from A4, which translates into rook takes pawn at A4.)

It would be a very complex way to store a chess game, but it can be done in the same datamodel as my banking application.

With the diabetes project, each transaction would be a measurement. The contract would be owned by the person who is measuring his or her blood and we don’t need to send or receive these measurements, just link them to the contract.

The WordChain project would be a bit more complex. It would be a bunch of items with relations, properties and children. Contracts and assets would be used to support updates to the texts with every edit of a WordChain item kicking the old item out of the contract and adding a new item into the contract. That would result in a contract per word in the database.

A lot of work is still required to make sure it works as well as I expect. It would not be the most ideal datamodel for all these projects but it helps me to focus more on the business layer and the GUI without worrying about any database changes. Once the business model becomes more advanced, I could create a second data layer with a better datamodel to improve the performance of the data management.

 

 

 

Leave a comment

Your email address will not be published. Required fields are marked *